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ABSTRACT

Breast tumor is one of the most prominent indicators for the diagnosis of breast cancer. The precise seg-
mentation of tumors is crucial for enhancing the accuracy of breast cancer detection. A physician’s assess-
ment of the MRI scan is time-consuming and require a lot of human effort and expertise. Furthermore,
traditional medical segmentation approaches frequently need prior information or manual feature
extraction, resulting in a subjective diagnosis. Therefore, the development of an automated image seg-
mentation approach is essential for clinical applications. This work presents BTS-GAN, an automatic
breast tumor segmentation process using conditional GAN (cGAN) in Magnetic Resonance Imaging
(MRI) scans. First, we used an encoder-decoder deep network with skip connections between encoder
and decoder for the generator to increase the localization efficiency. Second, we utilized a parallel dilated
convolution (PDC) module to retain the features of various sizes of masses and to effectively extract infor-
mation about the masses’ edges and interior texture. Third, an extra classification-related constraint is
included to the loss function of the cGAN for mitigating the hard-to-converge challenge in image-to-
image (I2I) translation tasks based on classification. The generator side of our proposed model learns
to detect the tumor and construct a binary mask, while the discriminator learns to distinguish between
ground truth and synthetic masks, driving the generator to produce masks as genuine as possible. The
experimental results demonstrate that our BTS-GAN is more efficient and reliable for breast tumor seg-
mentation and outperform other segmentation techniques in terms of the IoU and Dice coefficient on the
publicly available RIDER breast cancer MRI dataset. Our proposed model achieved an average IoU and

Dice scores of 77% and 85% respectively.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Karabuk University This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

chances of survival. According to the literature, there are almost
40% chances of survival on early detection [4]. However, in medical

Breast cancer is the most prevalent cancer in females at the
moment and is one leading cause of women’s mortality worldwide
[1]. In 2018, about 627,000 fatalities due to breast cancer were
recorded globally by the World Health Organization (2019), repre-
sents almost 15% of total fatalities from cancer in females. In addi-
tion, the prevalence of the breast cancer grows per year [2].
Fortunately, as stated by Liu, Tang, et al., the mortality of breast
cancer is declining because of people’s awareness about the dis-
ease and developments in medical technologies that enable its
early identification and diagnoses [3]. To prevent the disease from
further progression, adequate and on-time care will improve the
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image analysis, one basic challenge is the correct segmentation to
identify the boundaries of organs or lesions in images. The segmen-
tation of image data is a critical step in the analysis of shapes, vol-
ume detection, and treatment arrangement for radiation therapy.
Since manually annotating object boundaries is subjective and
may be time-consuming, a reliable and accurate automatic seg-
mentation technique is the requirement of clinical and research
applications.

Mammography (MG) and Ultrasonography (US) are commonly
utilized modalities for examining breast lesions due to their afford-
able price and exploitation facility. Yet, these approaches some-
times lack essential details needed to recognize the tumor under
investigation. Moreover, US requires high analysis expertise due
to low image quality [5], while MG is not a good choice due to
high-density mammary glands. Magnetic Resonance Imaging
(MRI) is an effective method in screening breast tumors recently.
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MRI generates multi-view visual representation and high quality
images of the inspected body parts, particularly for soft tissues of
the breast than both MG and US. In addition, MRI supports a num-
ber of sub-sequences like Dynamic Contrast Enhanced MRI (DCE-
MRI). In the DCE-MRI exam, a paramagnetic contrast agent is
inserted into the body, which causes images with relatively high
intensity in the tumor region [6].The DCE-MRI permits a highly
precise breast tumor follow-up. Militello et al. [7] proposed a
semi-automated strategy for segmenting masses on DCE-MRI of
the breast, using Fuzzy spatial clustering and got better results
than other classical techniques.

Before the advancement of Deep Learning (DL), traditional Med-
ical Image (MI) segmentation methods primarily comprise of level
set based methods [8], watershed algorithms [9], region growing
[10], Markov Random Fields [11], active contour models [12], and
their extensions. However, these approaches only provide satisfac-
tory results if the background and object area differ widely. Local
feature limitations and curvature constraints are often added to
models to increase the segmentation accuracy. However, when
the object and background areas are identical, such solutions are
still not effective. As a result, utilizing a DL algorithm to tackle
medical image segmentation is a promising field of study with the-
oretical and practical implications.

The evolution of DL in medical image domain has a significant
positive influence on disease diagnosis tools in medical image
applications. Several research projects have been suggested for
tasks such as medical image classification [13,14], detection [15]
and segmentation [16-18]. In the near past, Convolutional Neural
Networks (CNN) have accomplished great outcomes in segmenta-
tion tasks of medical images. Piantadosi et al. [19] used an ensem-
ble of deep CNNs trained on 3D MR data to correctly segment
breast parenchyma from the surrounding air and other tissues like
the chest wall. In addition to using the latest techniques in the
field, they used a multi-planar combination of U-Net CNNs utiliz-
ing a suitable projection-fusing strategy, which allows for multi-
protocol applications. The proposed approach has been validated
using two different datasets containing a total of 109 DCE-MRI
studies with histopathologically confirmed lesions and two acqui-
sition protocols. Wang et al. [20] proposed a 2D/3D mixed convo-
lution module capable of exploiting contexts between adjacent
slices in 90 DCE-MRI studies. A multi-scale context extractor block
was presented to retrieve multi-scale image features, which are
essential for breast lesions’ shape and size diversity. Yousefikamal
et al.[21] proposed an effective NN for Breast Tumor Segmentation
(BTS) using mammogram scans. The author used a fuzzy approach
by combining tumor region segmentation and classification. CNN
was utilized for classification of images into normal, abnormal cat-
egories, while abnormal images were further segmented for
tumors. Almajalid et al. [22] proposed a neural network for ultra-
sound images originally designed for microscopy image segmenta-
tion. The proposed model showed good results.

After CNN the Fully Convolutional Networks (FCN)[23] and U-
Net [24] models are frequently employed nowadays for medical
image segmentation. Moeskops et al.[25] proposed a Fully Con-
nected Neural Network (FCNN) using MRI scans for breast pectoral
muscle segmentation. The dataset contains a total of 34 MR scans.
Antari et al. [26] proposed a three-stage automated CAD scheme
for BTS using digital mammograms. The author adopted a YOLO
network for tumor localization and a Full resolution Convolutional
Network (FrCN) to isolate the ROIs. Lastly, classification was done
using CNN. U-Net [24] is premised on the idea of FCN. It is com-
posed of a feature extractor encoder and an image reformation
decoder. Several enhancements and changes in U-Net to further
enhance performance have recently been examined. Tong et al.
[27] used a U-Net to segment the lung nodule. To speed up the
training and minimize overfitting, U-Net was equipped with a
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batch normalization [28] layer. In order to locate the nipples area
from the remaining breast area, Zhuang et al. [29] proposed a cus-
tomized U-NET architecture to segment the nipples from full
breast US images. For accurate segmentation of malignancy in
breast US images, Zhuang et al.[30] developed another U-Net based
model called RADU-Net. For breast segmentation, U-NET++ has
been proposed by Jiao, H et al. using high contrast MRI scans
[31]. Dalmis et al. [32] employed a U-Net based segmentation
method for breast fibroglandular tissue (FGT) segmentation. While
the U-Net technique for BT segmentation is effective, the features
retrieved using U-Net are insufficient to identify the fine margins
of the tumor and, in some instances, result in excessively seg-
mented results, as illustrated in Fig. 7.

Employing Generative Adversarial Networks (GAN) [33] is
another way to improve medical image segmentation and get more
specific results. This is still a hot research subject at the moment.
GANS significantly increases the quality of medical image segmen-
tation by its excellent synthesizing capacity and potential to
extract and distribute data. This technique has been found to
increase semantic segmentation performance with the additional
use of adversarial loss during training the model [34,35]. The gen-
erative network learns to detect the tumor and produce a binary
mask, while the adversarial network learns to differentiate
between actual and synthetic masks, compelling the generator to
build realistic binary masks. Even with a small number of training
data, the cGAN performs well. The use of adversarial loss as an
extra global segmentation evaluation is anticipated to be a useful
supplementary signal for segmentation models in general, and par-
ticularly for datasets of limited size [36] which are prevalent in
cancer imaging datasets. Unlike traditional generative models,
GAN does not require complicated probability calculations. The
distribution type does not need to be specified, and deep neural
networks directly mimic the distribution using real data. GANs
have been widely utilized to create fictitious data for a variety of
purposes, including image synthesis and dataset generation.
GAN-based solutions are used effectively in the area of medical
imaging [18,37-41]. Most recently, conditional Generative Adver-
sarial Networks (cGAN) have been utilized for BTS and shape clas-
sification in mammogram scans. The results obtained using cGAN
outperform other techniques of BT segmentation [42].

Inspired by the above performance of the GAN, we present a
new U-Net based breast tumor segmentation GAN (BTS-GAN) sys-
tem to segment the BT region in whole breast MRI scans. The gen-
erator of the proposed system is composed of an improved version
of the U-Net, with a parallel dilated convolution (PDC) module
between encoder and decoder. PDC has the ability to expand the
receptive field, which allows it to capture breast masses of varying
sizes and shapes without increasing the trainable parameters. The
PDC block can help reduce the issue of small tumor-relevant char-
acteristics being lost due to successive downsampling layers. The
capabilities of the baseline U-Net were enhanced employing
skip-connections and PDC. The enhanced U-Net was trained
against a patch DCNN, used as the discriminator of our proposed
BTS-GAN to further increase the performance. Moreover, we pro-
posed a modified objective function by adding a classification
related constraint to the objective of cGAN because BT segmenta-
tion is more like a pixel-level classification task than a regression
task. The segmentation result became more stable and precise
when the upgraded U-Net was trained versus the discriminator
with a novel objective function. Contributions of the research
are: (1) This research is the first to use the cGAN architecture with
DCE-MRI images for breast tumor segmentation, (2) The PDC mod-
ule is used to leverage image multi-scale and contextual informa-
tion by constantly extending the receptive field at varying dilation
rates without lowering the feature map resolution, (3) we added
classification related constraints to the loss function for efficient
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regularization of the cGAN to make it more efficient at solving the
semantic segmentation (SS) task for medical images, (4) our seg-
mentation method achieved better performance than U-Net and
improved U-Net on the public dataset.

2. Motivation and methodology
2.1. Background

In 2014, Goodfellow et al. [33] presented GAN as a solution for
modeling image data, which was subsequently utilized to create
additional images. GAN contains two key modules, a Generator
(G) and a Discriminator (D). These two modules are trained enough
to solve the min-max game theory problem. The objective of the
GAN is given by:

mcianaxL(G,D) = Eupyy w108 D(U)] 4+ Ewep,z [log(1
—D(G(w)))] (1)

D is the discriminator and G represents generator, u represent real
image, w is the arbitrary input to the generator, drawn from Pw, a
probability distribution, G(w) is the output of G. D(G(w)), D(u) are
the probabilities of the generated and real images respectively,
judged by D.

The goal of GAN is to figure out how training data is distributed
[17]. First of all, noise is introduced into generator G to achieve this
goal. This noise is turned into an image by the G. During training,
the G attempts to minimalize the objective function and fool D
by generating similar images like the original, while the discrimi-
nator learns and tries to assign a high score to the real image
and thus learn to discriminate between actual and generated input
by maximizing the objective function. The cGAN is a GAN modifi-
cation that enables us to control the generated image, for example,
enabling us to generate an image of a specific class. As a result,
cGANs are well-suited for 121 transformation tasks, in which an
input image is conditioned and created an output. The objective
of the cGAN has the following form to guarantee that the output
image matches the input image.

Pecan(G,D) = Ey ,[log D(u, v)] + Eyw(log(1 — D(u, G(u, w)))] (2)

Where in Eq. (2), v is the target image and % an is called the adver-
sarial loss. The random variable z in dropout layers helps in produc-
ing deterministic results, avoiding overfitting. The adversarial loss is
insufficient because of the model collapse problem, which can affect
target domain output. The generator fools not only the discrimina-
tor but also output results that should be nearly similar to the
ground truth. There is numerous information shared between input
and output of the G for the image translation process; therefore,
additional constraints are included to the objective loss function
to guarantee the similarity among input and output of the genera-
tor. Therefore, L1 distance loss was added to the final objective to
make sure the large similarity among input and output images of
G. Mathematically, L1 is given as:

L11(G) = Eyvwl(llv — G(u, wlj] 3)

Eq. (3) is the generator L1 loss term. The above two loss functions
were combined by Isola et al. [43] in their famous Pix2Pix algorithm
for 121 translation task, which got super success in the domain. The
Pix2Pix’s loss function is calculated as:

Lpiprix = chAN(Gs D) + j-LLl (G) (4)

In Eq.(4), ZLcan is the conditional loss and #; represents L1 dis-
tance between the fake and real masks. L1 regularizes G to produce
images that are acceptable copies of the source image while Zan
determines whether the G can produce credible images in the target
domain. Zpixpix has successfully estimated the mapping functions
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for a wide range of 12I translation tasks [44-46]. However, when
it came to SS of breast lesions, we discovered that it could not
obtain a comparably accurate outcome. We think the reason behind
is, their GAN loss technique treats 121 translation as regression prob-
lem, whereas SS is inherently a pixel-level dense classification task.
As a result, we revised the issue by including the classification-
related loss component, i.e., cross entropy (CE) loss, in the design
of our GAN loss.

2.2. Proposed Model

Our proposed BTS-GAN is a supervised learning approach based
on cGAN that needs data in pairs of input and target images. Sup-
pose “A” is our source image, and “B” is our ground truth (binary
mask) in the segmentation problem. The BTS-GAN’s generator tries
to generate a binary mask that should be similar to the B. Con-
versely, the discriminator network of the BTS-GAN learns whether
the generated mask is same as the B, i.e., real or fake. The generator
has a single image, both as its input and output, while the discrim-
inator receives the generated output from the generator and its
pair ground truth as input and tries to score the value. The score
for the generator is calculated as an adversarial score which pro-
vides the potential to learn and output correct segmentation (bi-
nary mask). These two networks compete with each other in a
min-max two player game theory. A simple overview of our pro-
posed method for BT segmentation in MRI is shown in Fig. 1.

2.2.1. Loss function
The loss function of the BTS-GAN has the following form,

Lers-can(G, D) = Lccan(G, D) + AL (G) + L(G)) (5)

where Z.can(G, D) and ;1 (G) have the same definition as in Eq.(4),
and L (G) is the CE loss associated with the SS task. Since SS is a
pixel-by-pixel classification problem, instead of a regression task,
the #(G) regularization term must enable our BTS-GAN to struc-
ture this I2] transformation task nearer to a classification problem.
As a result, during adversarial training against D, our G having extra
term % would favor to develop satisfactory segmentation results.
Generally, our final loss can be calculated as:

LoSSfina = arg mGianaxxccAN(G, D) + 2[Z11(G) + L&(G)] (6)

Input 256x256x1

Generator

Improved U-Net
256 x 256 x 1

\ 4

output 256x256x1 generated Output

256 x 256 x 1
[ =]
0
®
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£
v o
: 1
Patch discriminator i
30x30x1 o
Real / Fake

Fig. 1. A simple flow diagram of the proposed methodology for BTS.
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In Eq. (6), one additional hyper-parameter lambda (1) weighting is
the generator means absolute error factor. The 4 factor adjusts the
adversarial and global losses [47].

2.2.2. Parallel dilated convolution module

In order to expand the receptive field of the convolution kernel
without adding extra parameters in the SS task, the resolution of
the feature map must be contracted by pooling or stride convolu-
tion [48,49]. Fig. 2 illustrates demonstrative diagrams of dilated
convolution, which avoids the requirement to reduce the feature
map’s resolution by inserting "holes” into the convolution kernel
to expand the receptive field and capture multi-scale semantic
information in images. Three parallel convolution branches make
up the PDC module. In particular, several dilated convolutions with
different dilation rates are cascaded in a branch of the PDC module,
which improves the representativeness of the feature maps for var-
ious scale targets. The output of each branch is then added element
by element to achieve multi-scale feature fusion. Fig. 3 illustrates
the PDC module in detail. In the first branch, feature sampling is
implemented using a simple 3 x 3 convolution. Two and three 3
X 3 convolution operations are cascaded in the second and third
branches, respectively. In the second branch, a basic 3 x 3 convolu-
tion and a dilated convolution with a rate of 2 are cascaded
sequentially. The three 3 x 3 convolutional layers in the final
branch have atrous rates of 1, 2, and 3, respectively. As a result,
the PDC module preserves multi-scale and context information in
the image while minimizing information loss in the surrounding
pixels caused by a single dilated convolution.

2.2.3. Generator

For the generator, we used the U-NET [24] model architecture
with custom modification. Mapping a high-resolution input grid
to a high-resolution output grid is a defining aspect of I12I transla-
tion problems. Furthermore, the input and output for the problem
we consider are both representations of a similar basic structure.
As a result, the input structure is closely associated with the output
structure. In a general encoder-decoder network, the input under-
goes a series of down sampling levels till it reaches a bottleneck
layer, at which point the process reverses. Here the information
must pass through all levels, including the bottleneck. Many image
translation problems share numerous low-level information
between input and output, and it is preferable to transfer this data
via the network directly. Skip-connections were inserted between
layers of the same size of encoder-decoder to provide the G with a
way of circumventing the bottleneck associated with this kind of
data [24]. We also introduced a PDC [48] module between the
encoder and decoder. Indeed, the PDC block aids the generator net-
work in recognizing breast tumor-related characteristics at various
scales and expanding the filters’ real receptive field. As a result, the
network becomes more sensitive to context without increasing the
number of parameters or the cost of execution. The G and D archi-
tectures are shown in Fig. 4.

Dilated convolution
with rate =3
kernel size =3

Dilated convolution
with rate =2
kernel size =3

Dilated convolution
with rate =1
kernel size =3

Fig. 2. Illustrative diagrams of dilated convolution with different atrous rates.
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Fig. 3. Architecture of the PDC module.

Initially, the encoder is fed with an input breast MRI scan of 256
X 256 x 1 in dimension. The encoder has a total of seven convolu-
tion layers with a filter size of 4 x 4 followed by stride filters of size
2 for feature down sampling, a Leaky-ReLu with alpha equal to 0.2,
followed by 2-dimensional batch normalization (BN), except in the
first layer (conv1). BN substantially increases the generated seg-
mentation samples’ efficiency, stability, and excellence. The deco-
der block is the opposite of the encoder and transforms the
latent variable into a volume of size 256 x 256 with one channel.
After each upsampling layer, the features of the corresponding
encoder layer are concatenated and thus expand the features
map for the next decoder layer. The decoder has seven deconvolu-
tion layers with the same 4 x 4 filter size followed by a stride of 2
and ReLu with an alpha of 0.2. To avoid overfitting, a dropout of
0.02 was applied only in the first 3 up-sampling layers. All layers
of convolution and deconvolution have been initialized using a
zero-mean random initializer with a standard deviation value of
0.02. Convolution is used after the final level in the decoder, fol-
lowed by a sigmoid function to map the output.

2.2.4. Patch-GAN Discriminator

The Discriminator of BTS-GAN is a Patch-GAN as used by Isola
et al. [43] to classify images. This deep CNN classifies N x N
patches of an input image as fake or real rather than the full image.
We convolutionally applied this discriminator throughout the
image and averaged all responses to obtain the final output of
the discriminator. This is beneficial since a smaller Patch-GAN
has small number of parameters, runs quicker, and has the ability
to process images of any size. This type of discriminator takes the
input as a Markov random field, with the assumption that pixels
distanced by greater than a patch diameter are independent.
Because discriminator training is closely linked to adversarial loss
efficiency, BN is introduced to regularize and accelerate the train-
ing procedure.

The Patch-GAN discriminator’s input tensor is a tensor con-
structed by concatenating the input-target pair and the input-out-
put pair generated by G to provide an estimate of how genuine
they appear. The network contains four 2-dimensional convolution
layers, as in Fig. 4. Each of the convolution layers is convoluted
with a filter size of 4x4 with stride of 2. Each upsampling layer
of the model undergoes BN and Leaky-ReLU. The output is further
convoluted to make a probability patch of 30 x 30. Each value in
the probability patch corresponded to a patch of the input images.
In the last layer, the sigmoid activation function is used to produce
the probability score of the input image being genuine (1) or fake

(0).

3. Experiments and Results
3.1. Dataset

The RIDER (Reference Image Database to Evaluate therapy
Response) breast MRI dataset was utilized to assess the perfor-
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Fig. 4. Suggested BTS-GAN framework: generator G (left side), and discriminator D (right side).

mance of our approach. The dataset is accessible at The Cancer
Imaging Archive (TCIA). The dataset comprises of DCE-MRI scans
of different patients with ground truth segmentation. The ground
truth segmentation part has been marked manually by the domain
experts. Each scan is 288 x 288 in dimensions. The dataset is avail-
able in DICOM format having 60 slices per scan. Fig. 5 presents
three samples from the RIDER MRI breast tumor dataset in the first
row with their masks in the second row. A total of 500 breast MRI
scans with ground truth masks were used for the experiment,
divided in the ratio of 80:20 for training (400) and testing (100),
respectively. As the number of datasets was relatively small, five-
fold cross-validation was adopted in the experiment on this data-
set. The training split was augmented (by randomly flipping
horizontally and vertically, rotation, varying scale, gamma correc-
tion), to increase the dataset size to 3200. The dataset has been
preprocessed and reshaped into 256 x 256 in dimensions.

3.2. Evaluation Metrics

To determine the model performance, the following standard
measures were utilized to assess the image segmentation perfor-
mance. We used the most common evaluation methods, i.e., loU,
dice similarity coefficient (DSC), True Positive Rate (TPR) and Mis-
classification Rate (MCR). These metrics, which range from 0 to 1,
measure the performance of region-based segmentation from a

(a) (b) (©

Fig. 5. RIDER breast MRI tumor images(1st row) in gray scale with their
corresponding binary masks(2nd row).

variety of perspectives. The core values required to calculate these
metrics are True Negatives (TN), False Negatives (FN), True Posi-
tives (TP), and False Positives (FP).

The overlap between the two samples is measured by the Dice.
It’s the most used measurement for grading segmentation tasks. It
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computes the resemblance between the ground truth the gener-
ated segmentation masks. The higher the DSC, the more similar
the generated result is to the ground truth. Let suppose I, is our
generated segmented image and I, represent our ground truth
image segmented by expert domain. Then DSC index can be writ-
ten mathematically as:

[I, NI |

Dice(ly,I;) =2 +——
(P t) “p|+|1t‘

(7)

IoU is the ratio of the ground truth’s intersection and union to the
generated segmented image. The higher the IoU, the more accurate
the segmentation. The IoU can be written mathematically as:

_ I, N 1|
I, U]

Jaccard = IoU(I,, I;) (8)

Our predicted segmentation image and ground truth value are
bound in between [0, 1]. Both of these measurement output value
of 1 if there exists an overlapping between the I, predicted mask
and I; ground truth and 0 in case of no overlapping. We can also
write it in the confusion matrix form.

. 2TP
Dice = 5 Tp + Fp 4 FN) ©)
TP
Jaccard = IoU = AP (10

Other standard evaluation measures are also used to measure the
segmentation error such as:

1,0l
TPF(Sensitivity) — (”? 3 (11)
t
O LI P 12
R A v Yy

Eq.(11) represents TPF also called Sensitivity. TPF is the fraction
of true positives that are detected as such. A least 50% intersection
between the generated output and ground truth was used to calcu-
late the TPF. Eq.(12) shows the Misclassification Rate (MCR), which
is previously applied to the brain segmentation problem [50]. The
lower the value of MCR the better the model perform.

3.3. Model training

We used the standard technique from [33] to optimize our net-
works, such that one gradient descent step on D is preceded by one
step on G. Rather of training G to minimize log(1 — D(u, G(u, w))),
as proposed in the original GAN study, we conversely train it to
increase logD(u, v). To choose the most optimal parameters of
the network, hyperparameter tuning is applied. Table 1 shows
the ranges used for hyperparameter tuning of the model. We used
a 2 value of 100 in Eq. 6, which shows the best results. We used
Adam optimizer with a learning rate of 2 x 10~*, momentum
parameters $; = 0.50, 8, = 0.99, and a batch vale of 24. Our BTS-
GAN’s optimization takes about 200 epochs to attain convergence.
Results obtained from our proposed model were satisfactory and
were evaluated using different standard metrics used in literature.
We performed qualitative as well as quantitative analysis to vali-
date our results. Our code is written in Python utilizing TensorFlow
libraries and evaluated on a computer equipped with a NVIDIA
GeForce GTX 1080 Ti GPU. The input images were resized to
256 %256 pixels.
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Table 1

Range for hyper parameter tuning applied.
Hyper Parameters Range
Number of epochs [100,150, 200, 250]
Lambda 4 [10 to 120]
Filter Size [3,4,5,7]
Batch size [16,24,32]
Dropout [0.01,0.02,0.03,0.04]

Learning rate [2x107%to2x1073]

3.4. Ablation study

3.4.1. Impact of different loss functions

GAN and its variations, despite of its advantages, also have
some disadvantages, one of which is the difficulty in converging.
To overcome this problem in the I2I translation task, some meth-
ods chose to frame it as a regression task and thus added L1 and
L2 separation as restrictions to the loss function of cGAN [43,51].
When a local minimum is attained during GAN’s optimization pro-
cedure, these techniques give rough guidance for the system to
proceed with gradient descent. However, this guidance works in
limited situations, such as image colorization, where the target
image is anticipated to consist of real-value pixels, nonetheless
doesn’t work for classification related problems, where the target
image consists of discrete-value pixels, carrying class info. There-
fore, we suggested that an extra classification connected loss Lcg
is beneficial for this SS task.

To examine the effect of different losses, we trained our gener-
ator and BTS-GAN using the following combination of loss func-
tions and recorded the DSC and IoU achieved in each case in
Table 2. The first row shows the results when only the generator
network was used for segmentation. As can be seen in the 2rd
row, the DSC and IoU score drops significantly, when Lg was
removed from the objective loss function. It indicates that the
GAN was experiencing the hard-to-converge problem when a
classification-based task was formulated as a regression-based
task.The 3rd row shows the outcomes when L was used in com-
bination with L.an. The contributions provided by L;; can also be
seen in Table 2, by comparing 3rd and 4th rows, so we opted to
use combination of all three.

3.4.2. Impact of PDC module

Table 3 shows the positive impact of the PDC module on the
proposed model. The first row is the baseline U-Net, the second
row is U-Net with PDC module, the third row is the BTS-GAN with
the proposed loss function without PDC module, the last row
shows the results of the proposed model with PDC module and full
loss function in terms of DC, loU, TPR, and MCR. The DSC of BTS-
GAN is 10% and 5% higher than U-Net and improved U-Net, respec-
tively. Similarly, the loU, sensitivity, and MCR of BTS-GAN are also
higher than U-Net and improved U-Net.

3.5. Quantitative Comparison

In this section we compare the segmentation results of our pro-
posed model with the prior research work. Six distinct segmenta-

Table 2

Segmentation results using various loss functions for training.
Different combinations of loss functions DSC loU
Generator only 0.804 0.723
BTS-GAN with L removed 0.599 0.567
BTS-GAN with L;; removed 0.845 0.768
BTS-GAN with Ly + Leg + Legan 0.854 0.774
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Table 3

The segmentation performance measures results using the three different DCNN models on test images from fivefold cross-validations.
Model PDC DSC loU TPR MCR
U-Net No 0.752 0.675 0.792 0.208
Improved U-Net Yes 0.804 0.725 0.842 0.158
BTS-GAN No 0.807 0.747 0.872 0.128
BTS-GAN Yes 0.854 0.774 0.934 0.076

tion techniques are selected specifically for this purpose. Five out
of six were mentioned in the research by Bouchebbah et al.[52],
namely Improved Self-Training (IMPST), Fuzzy C-Means (FCM),
Bayesian, K-Nearest Neighbor (KNN), and Levels Propagation
Approach (LPA). The other two studies are FCM and ALPA sug-
gested by Chen et al.[53] and Bouchebbah et al. [54], respectively.
The decision to use these approaches stems from the fact that they
were all evaluated on the same RIDER MRI dataset and assessed
using some or all of the assessment metrics described in "Evalua-
tion Metrics”. The experimental findings revealed that BTS-GAN
has produced comparable segmentation outputs to other standard
techniques and is able to be effectively used for BTS in MRI scans.
The results obtained from the previous work and results from our
proposed method are depicted in Table 4. For the BTS-GAN model,
we obtained an average DSC of 0.85, 0.91 for the best case, and 0.77
was achieved in the worst case. The average DSC score of BTS-GAN
is higher than both ALPA and FCM. The TPF maximum score is 0.97
with a mean value of 0.93, which is the highest TPF mean score of
all the approaches. The IoU maximum, minimum, and average
scores were 0.82,0.69, and 0.77, respectively. In addition, BTS-
GAN’s IoU mean score of 0.77 is higher than the best IoU mean
of the other techniques. BTS-GAN also has a lower MCR mean of
0.07. As can be observed from Table 4 that the efficiency of the sug-
gested segmentation model has outperformed other techniques.
The improvement made by the proposed model is all due to our
modification to the original U-NET and cGAN. The results clearly
show that adding PDC module to the baseline U-Net model, using
cGAN with a modified loss function, using BN, and the dropout at
the first 3 layers of the decoder have the ability to improve the
results of tumor segmentation.

3.6. Qualitative Comparison

For qualitative comparison, we selected three DL techniques,
including the baseline U-Net, the modified U-Net (generator of
BTS-GAN), and the proposed BTS-GAN model for BT segmentation.
First, we compare the original and modified U-Net models to
demonstrate the advantages of improving the network’s feature
retrieval capability. Second, in order to demonstrate the advan-
tages of adversarial training, the suggested model was evaluated
against modified U-Net.

Comparative segmentation results of both modified and original
U-Nets can be seen in Fig. 6. In all the three cases shown, the basic
U-Net gave FP segmentation and was not able to detect the edges
of the tumor, but the modified U-Net segmented them significantly
well. Despite the fact that the modified U-Net did not correctly seg-
ment the specifics of tumor edges, it performed much better than
the baseline U-Net. The differences in segmentation between our
BTS-GAN and the modified U-Net is shown in Fig. 7. The modified
U-Net and BTS-GAN produced similar outputs in majority of sam-
ples from the test data. However, the modified U-Net segmentation
outputs were still inconsistent, missing certain minor edges of the
breast tumor in some cases, which were successfully detected by
our BTS-GAN model. Both the generated binary mask and the
ground truth mask have been presented in Fig. 7, which shows that
our proposed model generates a binary mask similar in appearance
to the ground truth.

Fig. 8 shows the box plot comparison of our proposed method
versus our improved U-Net and baseline U-Net. The line inside
each box indicates the median value; box limits include the
interquartile ranges Q1 and Q3; upper and lower whiskers are cal-

Table 4
Quantitative comparison of BTS-GAN versus other approaches on RIDER dataset.

Methods Metrics
Statistics Dice IoU TPF MCR
MASRG [55] Max - - 0.99 0.48
Mean - - 0.82 0.18
Min - - 0.52 0.01
IMPST [56] Max - - 0.96 0.62
Mean - - 0.79 0.21
Min - - 0.38 0.04
KNN [57] Max - - 0.87 0.58
Mean - - 0.73 0.27
Min - - 0.42 0.13
Bayesian [58] Max - - 0.95 0.70
Mean - - 0.76 0.24
Min - - 0.30 0.05
LPA [52] Max - - 0.97 0.85
Mean - - 0.90 0.11
Min - - 0.77 0.02
FCM [53] Max 0.77 0.71 0.80 0.35
Mean 0.70 0.65 0.72 0.28
Min 0.63 0.60 0.65 0.20
ALPA [54] Max 0.81 0.75 0.91 0.37
Mean 0.74 0.67 0.74 0.26
Min 0.65 0.60 0.63 0.09
BTS-GAN Max 0.91 0.82 0.97 0.16
Mean 0.85 0.77 093 0.07
Min 0.77 0.69 0.78 0.03
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Ground Truth Baseline U-Net Modified U-Net

Fig. 6. Comparative results of baseline and modified U-Net on three MRI scans
(results are zoomed out for clear demonstration).

culated as 1.5 times the distance between the upper and lower box
limits; and all values outside the whiskers are assumed outliers,
which are indicated by circles. DSC and IoU values were plotted
using 100 testing samples of the dataset. Our cGAN-based model
had a narrow range of DSC and IoU values, whereas U-Net showed
a wider range of values. There are numerous outliers in the seg-
mentation results of the state-of-the-art U-Net method, whereas
the proposed method generated no outliers. We also calculated
the inference time of the above three models. U-Net, improved
U-Net, and the proposed BTS-GAN achieved 21.13, 22.26, and
19.84 frames per second, respectively.

4. Discussion

This research uses the cGAN model to suggest an automated DL
approach for segmenting breast cancer tumors utilizing DCE-MRI
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Fig. 8. Boxplots of DSC and IoU scores for all test samples.
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scans. We examined the limitations of the basic U-Net architecture
in BTS and came up with a two-step solution. Firstly, we modified
the U-Net to improve the model’s potential to extract features by
adding skip connections and PDC module between encoder and
decoder. Then, we introduced adversarial training with a modified
loss function to improve the segmentation result’s stability and
accuracy. We establish a classification-related limit for optimizing
cGAN, which helps to reduce the convergence problem for the
breast lesions segmentation. The model was evaluated with and
without using the CE loss term in the objective function of BTS-
GAN and proved that our proposed loss function got best accuracy.
The proposed method has been trained and evaluated using stan-
dard segmentation performance measures. We discovered that
extending the number of training examples significantly enhanced
training outcomes by employing standard augmentation methods,
but adding more augmented training samples did not improve the
outcomes. After training, the model provides satisfactory results on
our testing data.

The results from the suggested model and previous standard
techniques have been depicted, which shows that the outcomes
of the suggested model are quite satisfactory on the RIDER dataset
compared to other approaches. We achieved an average DSC score
of 0.85, IoU of 0.77, 0.93 for TPF, and 0.07 for MCR confirming that
BTS-GAN performed better than other approaches.

Although our model performed well on most MRI scans and got
better segmentation results in challenging cases, it still gave some
individual unsatisfactory results, shown in Fig. 9. As can be seen in
the first row, in this particular MRI scan, it is even difficult for a
naked eye to decide whether the area under the red box is a tumor
or not, which our model detected as a tumor. In the 2nd row, our
model detected the tumor inside the green box but could not
detect the sharp edges. Figs. 6, 7, and 9, are zoomed out for demon-
stration purposes.

Several deeper designs were explored in our study, but no sig-
nificant improvement was observed. Furthermore, training deeper
designs is more challenging, particularly for adversarial networks.
Using pooling layers in BTS-GAN did not enhance our results
either. As a result, following the approach of DCGAN [59], we used
convolution layers with the stride of 2 to achieve feature down-
sampling. The model performed well with batch normalization
compare to instance normalization, which does not learn the area
with a small number of binary mask pixels. The proposed model
can be used for other imaging modalities, like mammograms and
BUS scans, to perform binary tumor segmentation by training
model with respective imaging modalities. In the future, our goal
is to experiment with other imaging modalities, convert the model
to multi modalities segmentation model and make it more robust.

MRI Scan Ground Truth Output

ol -

Fig. 9. Cases of poor mass segmentation results.
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Fig. 7. Comparative results of the modified U-Net and the BTS-GAN on three MRI
scans (results are zoomed out for clear demonstration).

5. Conclusion

Automatic and precise tumor segmentation from breast MRI
scans is the subject of this article. We offer a cGAN based solution
(BTS-GAN) to this challenge to create tumor masks near the ground
truth masks by adding a PDC module in our generator network and
using a modified objective function for our model. We conducted
different experiments with our BTS-GAN and presented the quali-
tative and quantitative measures. Overall the network performed
very well and got an average DSC score of 85% and IoU of 77%, out-
performing other methods. In future, our goal is to experiment the
model with other imaging modalities, convert the model to multi
modalities segmentation model, and make it robust.
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Therapy Response (RIDER) breast MRI data-set was used to assess
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